Reproduction. also summarize the relationship between capacitation and aided reproductive technology or human being disease. In the end, we sum up the open questions and future avenues with this field. exposure to 17-estradiol triggers premature sperm capacitation in cauda epididymis. Reproduction. 2013;145:255C263. [PubMed] [Google Scholar] 29. Meizel S, Turner KO. Serotonin or its agonist 5-methoxytryptamine can stimulate hamster sperm acrosome reactions in a more direct manner than catecholamines. J Exp Zool. 1983;226:171C174. [PubMed] [Google Scholar] 30. de Lamirande E, Gagnon C. Human being sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med. 1993;14:157C166. [PubMed] [Google Scholar] 31. de Lamirande E, Gagnon C. Capacitation-associated production of superoxide anion by human being spermatozoa. Free Radic Biol Med. 1995;18:487C495. [PubMed] [Google Scholar] 32. Griveau JF, Renard P, Le Lannou D. An in Tedalinab vitro advertising part for hydrogen peroxide in human being sperm capacitation. Int J Androl. 1994;17:300C307. [PubMed] [Google Scholar] 33. Herrero MB, de Lamirande E, Gagnon C. Nitric oxide regulates human being sperm capacitation and protein-tyrosine phosphorylation in vitro. Biol Reprod. 1999;61:575C581. [PubMed] [Google Scholar] 34. Calogero AE, Hall J, Fishel S, Green S, Hunter A, DAgata R. Tedalinab Effects of -aminobutyric acid on human being sperm motility and hyperactivation. Mol Hum Reprod. 1996;2:733C738. [PubMed] [Google Scholar] 35. Jin JY, Chen WY, Zhou CX, Chen ZH, Yu-Ying Y, Ni Y, Chan HC, Shi QX. Activation of GABAAreceptor/Cl- channel and capacitation in rat spermatozoa: HCO3- and Cl- are essential. Syst Biol Reprod Med. 2009;55:97C108. [PubMed] [Google Scholar] 36. Kon H, Takei GL, Fujinoki M, Shinoda M. Suppression of progesterone-enhanced hyperactivation in hamster spermatozoaby -aminobutyric acid. J Reprod Dev. 2014;60:202C209. [PMC free article] [PubMed] [Google Scholar] 37. Petrounkina AM, Harrison RA, Petzoldt R, Weitze KF, T?pfer-Petersen E. Cyclicalchanges in sperm volume during in vitro incubation under capacitating conditions: a novel boar Tedalinab semen characteristic. Reprod Fetil. 2006;118:1283C1293. [PubMed] [Google Scholar] 38. Shadan S, Wayne PS, Howes EA, Jones R. Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biol Reprod. 2007;71:253C265. [PubMed] [Google Scholar] 39. Mix NL. Reorganization of lipid rafts during capacitation of human being sperm. Biol Reprod. 2004;71:1367C1373. [PubMed] [Google Scholar] 40. Boerke A, Tsai PS, Garcia-Gil N, Brewis IA, Gadella BM. Capacitation-dependent reorganization of microdomains in the apical sperm head plasma membrane: practical relationship with zona binding and the zona-induced Tedalinab acrosome reaction. Theriogenology. 2008;70:1188C1196. [PubMed] [Google Scholar] 41. Suzuki F. Changes in the distribution of intramembranous particles and filipin-sterol complexes during epididymal maturation of golden hamster spermatozoa. J Ultrastruct Mol Struct Res. 1988;100:39C54. [PubMed] [Google Scholar] 42. Visconti PE, Krapf D, de la Vega-Beltrn JL, Acevedo JJ, Darszon A. Ion channels, phosphorylation and mammalian sperm capacitation. Asian J Androl. 2011;13:395C405. [PMC free article] [PubMed] [Google Scholar] 43. Gadella BM, Harrison RA. The capacitating agent bicarbonate induces protein kinase A-dependent changes in phospholipid transbilayer behavior in the sperm plasma membrane. Development. 2000;127:2407C2420. [PubMed] [Google Scholar] 44. Watanabe H, Tedalinab Takeo T, Tojo H, Sakoh K, Berger T, Nakagata N, Mak TW, Kondoh G. Lipocalin 2 binds to membrane phosphatidylethanolamine to induce lipid raft movement inside a PKA-dependent manner and modulates sperm maturation. Development. 2014;141:2157C2164. [PubMed] [Google Scholar] 45. Simons K, Ikonen E. How cells handle cholesterol. Technology. 2000;290:1721C1726. [PubMed] [Google Scholar] 46. Simons K, Vaz WL. Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct. 2004;33:269C295. [PubMed] [Google Scholar] 47. Visconti PE, Ning X, Forns MW, Alvarez JG, Stein P, Connors SA, Kopf GS. Cholesterol efflux-mediated transmission transduction in mammalian sperm: cholesterol launch signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev Biol. 1999;214:429C443. [PubMed] [Google Scholar] 48. Demarco IA, Espinosa F, Edwards J, Sosnik J, De La Vega-Beltran JL, Hockensmith JW, Kopf GS, Darszon A, Visconti PE. Involvement a Na+/HCO3- cotransporter in mouse sperm capacitation. J Biol Chem. 2003;278:7001C7009. [PubMed] [Google Scholar] 49. de Lamirande E, Lamothe G. Reactive oxygen induced reactive oxygen formation during human being sperm capacitation. Free Radic Biol Med. 2009;46:502C510. [PubMed] [Google Scholar] 50. Andrews JC, Nolan JP, Hammerstedt RH, Bavister BD. Part of zinc during hamster sperm capacitation. Biol Reprod. 1994;51:1238C1247. [PubMed] [Google Scholar] 51. Wolf DE, Hagopian SS, Ishijima S. Changes in sperm plasma membrane lipid diffusibility after hyperactivation during in vitro capacitation in the mouse. J Cell Biol. 1986;102:1372C1377. [PMC free article] [PubMed] [Google Scholar] 52. Macas-Garca B, Gonzlez-Fernndez L, Rabbit polyclonal to AMPK gamma1 Loux SC, Rocha AM, Guimar?sera T, Pe?a FJ, Varner DD, Hinrichs K. Effect of calcium, bicarbonate, and albumin on capacitation-related events in equine.